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A Few Sources for Data Examples Used

1. Statistical Methods in Water Resources by 
D.R. Helsel and R.M. Hirsch (H&H)

2. Statistical Methods and Pitfalls in 
Environmental Data Analysis, Yue Rong, 
Environmental Forensics, Vol 1, 2000, pgs 
213-220. (Rong)

3. Data provided by Steve Saiz (Saiz)
4. Introduction to Probability and Statistics, 

Mendenhall and Beaver (M&B)
5. Occasionally, my own data because I 

understand it!
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The Big Picture
Why use statistical methods?
• Describe features of a data set
• Make inferences about a population using 

sample data
– Estimate parameters (such as means) with a 

certain level of confidence
– Test hypotheses about specific parameters or 

relationships
• Predict future values based on past data
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Populations and Samples

Population data:
• Measurements available on all “units” of 

interest.
– Example: Annual peak discharge for Saddle 

River, NJ from 1925 to 1989. (H&H)
– Can be considered as population data if only 

those years are of interest.
– Can be considered as sample data and used 

for inference about all possible years.
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Sample Data
Sample data used for two purposes:
• Describing that sample only
• Making inferences to a population
• Ideal is a “random sample” but almost impossible 

to get. Instead:

Fundamental Rule for Using Data for Inference: 
Available data can be used to make inferences about 
a much larger group if the data can be considered to 
be representative with regard to the question(s) of 
interest.
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Examples of sample data

• Nickel effluent data, City of San Francisco 
(data from Saiz)
– Grab samples from 1999 to 2002
– Representative of a larger population of nickel 

concentration data; what population?
• Groundwater monitoring data for benzene 

concentrations for 16 quarters, 1996 to 
1999 (data from Rong)
– Representative of a larger population?
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Independent vs Paired Samples
For comparing two situations, data can be 

collected as independent samples or as 
“matched pairs.” Examples:

• Independent samples: 
– Compare wells upgradient and downgradient

from a toxic waste site for a certain chemical. 
• Matched pairs (H&H): 

– Compare atrazine concentrations before 
(June) and after (Sept) application season in 
24 shallow groundwater sites (same sites 
both times).
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Class Input and Discussion

Share examples of data you have collected 
and/or dealt with in your job:
• How were the data collected?
• What was the “question of interest?”
• Paired data or independent samples?
• Population or sample?
• If sample, what larger population do 

they represent?
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Types of Data
There are various ways to classify data, but 

probably not too useful for your data:
• Nominal: 

– “Name” only, also called categorical data
– Example: Classify wells by land use in area (residential, 

agricultural, industrial, etc)
• Ordinal: 

– Ordered, but numbers may not have much meaning.
– Example (H&H): 0 = concentrations below reporting 

limit, 1 = above rl but below a health standard, 2 = 
above health standard.
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Types of Data, Continued
• Interval: 

– Numbers have meaning, but ratios do not.
– There is no absolute 0 (“none”).
– Example: Temperature

• Ratio: 
– There is an absolute 0
– Ratios have meaning.
– Example: Nickel concentration (it makes 

sense to talk about a sample having twice the 
concentration of another sample).
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Categorical vs Quantitative Data
• Categorical data

– Nominal, and sometimes ordinal
– For a single variable, summaries include frequencies 

and proportions only
• Quantitative data

– Interval, ratio, sometimes ordinal
– Summarize with numerical summaries

• Multiple variables (same or different types). For 
instance, categorize wells by land use, and 
compare a quantitative measure across uses.
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Types of Statistical Procedures
Graphical summaries

– Provide visual information about the data set
– Provide guidance on what statistical methods 

are appropriate
Numerical summaries

– Provide information about specific features of 
the data set

Inference (parametric, nonparametric)
– Infer things about a population, often to 

answer a yes/no question



3

Day 1, Morning, Slide 13

Summary Features of 
Quantitative Data

1. Location (Center, Average)
2. Spread (Variability)
3. Shape (Normal, skewed, etc)
4. Outliers (Unusual values)

We use pictures and numerical information 
to examine these.
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Questions about quantitative variables:
One Quantitative Variable
Question 1: What interesting summary measures, like the 

average or the range of values, can help us understand the 
data?
Example: What is the average nickel concentration in the SF 
effluent data, and how much variability is there?

Question 2: Are there individual data values that provide 
interesting information because they are unique or stand out 
in some way (outliers)?
Example: (M&B) Data on mercury concentration in livers of 
28 dolphins were all over 100 micrograms/gram except 4 of 
them, which were all under 10. Explanation: 4 dolphins 
under 3 years old, others all more than 8 years old.
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One Categorical, One Quantitative Variable 
(Comparing across categories)
Question 1: Are the quantitative measurements similar 

across categories of the categorical variable?
Example: (H&H) Do wells upgradient and 
downgradient of a hazardous waste site have the same 
average concentration of a toxic compound?

Question 2: When the categories have a natural ordering 
(an ordinal variable), does the quantitative variable 
increase or decrease, on average, in that same order?
Example: Do low, medium and high flow areas of a 

stream have an increasing (or decreasing) average 
amount of a certain type of vegetation?
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Pictures for Quantitative Data
• Look at shape, outliers, center (location), 

spread, gaps, any other interesting features.
Four common types of pictures:
• Histograms: similar to bar graphs, used for 

any number of data values.
• Stem-and-leaf plots and dotplots: present all 

individual values, useful for small to moderate
sized data sets.

• Boxplot or box-and-whisker plot: useful 
summary for comparing two or more groups.

• Values are “centered” at about 2.6 or 2.7 (µg/L)
• Shape is “skewed to the right” (more on this later)
• Values range from about 1.9 to 4.5

Histogram: SF Nickel Effluent Data (Saiz)
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Notes about histograms
• Intervals are equally spaced. Example: Each interval has 

width 0.25.
• One goal is to assess shape. Between 6 and 15 intervals is a 

good number (may need to use more if there are gaps and/or 
outliers). 11 in nickel example. 

• Some authors suggest using smallest k with 2k ≥ n, but not 
good for small n. Ex: n =39, so would use only k = 6. 

• Decide where to put values that are on the boundary. For 
instance, would 2 go in the interval from 0 to 2, or from 2 to 
4? Need to be consistent. (Not relevant in this example.)

• Can use frequencies (counts) or relative frequencies
(proportions) as vertical axis. Example uses frequencies.
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Number of “bins” can change picture
Ex: Peak discharge, Saddle River, NJ (H&H) 
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Even a small change in number of intervals made a difference.
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Creating a Dotplot
These can be useful for comparing groups
•Ideally, number line represents all possible values and 
there is one dot per observation. Not always possible. 
If dots represent multiple observations, footnote 
should explain that.
•As with histogram, divide horizontal axis into equal 
intervals, then put dots on it for each individual in 
each interval.
•Example (next slide): Compare ln(specific capacity) 
for wells in Appalachians of Pennsylvania, 4 rock 
types. [ln(x) = natural log of x]

Dotplots of Ln(specific capacity), H&H

5.64.22.81.40.0-1.4-2.8-4.2

Dolomite

Limestone

Siliclastic

Metamorphic

Log of Specific Capacity (gal/min/ft)

Each dot represents one observation. Note 
different ranges, and possibly different centers.

Divide range of data into equal units 
to be used on stem. Have 6 to 15 stem 
values, representing equally spaced
intervals. Here, we could use 2 or 5 
for each digit from 1 to 4.

Creating a Stemplot (stem and leaf 
plot) Ex: SF nickel effluent data

Step 1: Create the Stem

Example: Each of the 6 stem values 
represents a possible range of 0.5 First 
one represents 1.5 to 1.9, then 2.0 to 2.4, 
then 2.5 to 2.9, and so on, up to 4.0 to 
4.4.

1|
2|
2|
3|
3|
4|

2.8, 3.0, 3.3, 2.5, 2.3, 2.4, 2.7, 2.8, 2.6, 3.9, 3.5, 2.5, 3.7, 4.4, 2.3, 2.6, 2.5, 
2.2, 2.6, 3.2, 3.0, 1.9, 2.3, 2.3, 3.5, 2.4, 2.2, 2.4, 2.4, 2.2, 2.0, 2.5, 2.8, 2.7, 
2.8, 2.1, 2.6, 3.3, 2.1
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Creating a Stemplot

Attach a leaf to represent each 
data point. Next digit in number 
used as leaf; drop any 
remaining digits.
Example: First 5 values are 
2.8, 3.0, 3.3, 2.5, 2.3. The 
numbers after the decimal 
point are the “leaves”

Step 2: Attach the Leaves

Optional Step: order leaves on each branch.

1|
2| 3
2| 8 5
3| 0 3
3|
4|

Reusing digits two or five 
times. Goal: assess shape.

Further Details for Creating Stemplots

Stemplot A:
1|9
2|01122233334444
2|55556666778888
3|00233
3|5579
4|4

EX: 1|9 = 1.9

Stemplot B:
1|9
2|011
2|2223333
2|44445555
2|666677
2|8888
3|00
3|233
3|55
3|7
3|9
4|
4|
4|4

Two times:
1st stem = leaves 0 to 4
2nd stem = leaves 5 to 9

Five times:
1st stem = leaves 0 and 1
2nd stem =leaves 2 and 3, etc.
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Nickel Example: Shape
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Stemplot B:
1|9
2|011
2|2223333
2|44445555
2|666677
2|8888
3|00
3|233
3|55
3|7
3|9
4|
4|
4|4This shape is called 
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Describing Shape
• Symmetric, bell-shaped
• Symmetric, not bell-shaped
• Bimodal: Two prominent “peaks” (modes)
• Skewed Right: On number line, values 

clumped at left end and extend to the right
(Very common in your data sets.)

• Skewed Left: On number line, values clumped 
at right end and extend to the left (Ex: Age at 
death from heart attack.)
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Bell-shaped example: Heights of 94 females
Heights of 94 female college students.  Bell-shaped, centered 
around 64 inches with no outliers.
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Bimodal Example: Old Faithful Geyser, time between
eruptions, histogram from R Commander

Times between 
eruptions of the 
Old Faithful geyser, 
shape is bimodal.  
Two clusters, 
one around 50 min., 
other around 80 min.

Source: Hand et al., 1994
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Boxplots, based on 
“Five Number Summary”:

Median
Lower Quartile            Upper Quartile

Lowest                              Highest

The five-number summary display

• Lowest = Minimum
• Highest = Maximum
• Median = number such that half of the values are at 

or above it and half are at or below it (middle value 
or average of two middle numbers in ordered list).

• Quartiles = medians of the two halves.
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Boxplots
Visual picture of the five-number summary

190 statistics students asked how many hours 
they slept the night before (a Tuesday night). 

Example: How much do statistics students sleep?

7
6 8
3 16

Five-number summary for number of hours of sleep 
(details of how to find these a little later)

Two students reported 
16 hours; the max for 
the remaining 188 
students was 12 hours.
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1. Draw horizontal (or vertical) line, label it 
with values from lowest to highest in data.

2. Draw rectangle (box) with ends at quartiles.
3. Draw line in box at value of median.
4. Compute IQR = distance between quartiles.
5. Compute 1.5(IQR); outlier is any value more 

than this distance from closest quartile. Draw 
line (whisker) from each end of box extending 
to farthest data value that is not an outlier. (If 
no outlier, then to min and max.)

6. Draw asterisks to indicate the outliers.

Creating a Boxplot
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1. Draw horizontal line and label it from 3 to 16.
2. Draw rectangle (box) with ends at 6 and 8 (quartiles).
3. Draw line in box at median of 7.
4. Compute IQR (interquartile range) = 8 – 6 = 2.
5. Compute 1.5(IQR) = 1.5(2) = 3; outlier is any value 

below 6 – 3 = 3, or above 8  + 3 = 11.

Creating a Boxplot for Sleep Hours

6. Draw line from 
each end of box 
extending down 
to 3 and up to 11.

7. Draw asterisks 
at outliers of 12 
and 16 hours.

• Divides the data into 
fourths.

• Easily identify outliers.
• Useful for comparing 
two or more groups.

Interpreting Boxplots

Outlier: any value 
more than 1.5(IQR) 
beyond closest quartile.

¼ of students slept 
between 3 and 6 hours

¼ slept between 6 and 
7 hours

¼ slept between 
7 and 8 hours

¼ slept between 8 and 
16 hours

Sometimes boxplots are vertical instead of 
horizontal; also, useful for comparisons
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Boxplot of ln(Spec, Cap.) of  Wells in PA

Day 1, Morning, Slide 35

Outlier: a data point that is not consistent 
with the bulk of the data.

Outliers and How to Handle Them

• Look for them via graphs.
• Can have big influence on conclusions.
• Can cause complications in some statistical analyses.
• Cannot discard without justification.
• May indicate that the underlying population is 

skewed, rather than one unique outlier (especially 
with small samples)

Possible reasons for outliers
and what to do about them:
1. Outlier is legitimate data value and represents 

natural variability for the group and variable(s) 
measured. Values may not be discarded. They provide 
important information about location and spread.

2. Mistake made while taking measurement or entering 
it into computer. If verified, should be discarded or 
corrected.

3. Individual observation(s) in question belong(s) to a 
different group than bulk of individuals measured. 
Values may be discarded if summary is desired and 
reported for the majority group only. 
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Example: Sleep hours
Two students were outliers in amount of 
sleep, but the values were not mistakes.

Reason 1: Natural variability, it is not okay to remove 
these values.

Example: Students gave mother’s height

80.577.073.570.066.563.059.556.0
momheight

Dotplot of momheight

Height of 80 inches = 6 ft 8 inches, almost surely an error!
Reason #2, investigate and try to find error; remove value.
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Example: Weights (in pounds) 
of 18 men on crew teams:

Cambridge:188.5, 183.0, 194.5, 185.0, 214.0, 
203.5, 186.0, 178.5, 109.0

Oxford: 186.0, 184.5, 204.0, 184.5, 195.5, 
202.5, 174.0, 183.0, 109.5

Note: last weight in each list is unusually small. ???

Day 1, Morning, Slide 40

They are the coxswains for their teams, while 
others are rowers. 
Reason 3: different group, okay to remove if only 
interested in rowers.

Cambridge:188.5, 183.0, 194.5, 185.0, 214.0, 
203.5, 186.0, 178.5, 109.0

Oxford: 186.0, 184.5, 204.0, 184.5, 195.5, 
202.5, 174.0, 183.0, 109.5

Note: last weight in each list is unusually small. ???

Example: Weights (in pounds) of 18 
men on crew teams:
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Numerical Summaries 
of Quantitative Data

Notation for Raw Data:
n = number of individual observations in a data set
x1, x2 , x3,…, xn represent individual raw data 
values

Example: Nickel effluent data:  
So  n = 39, and 

x1= 2.8,    x2 = 3.0,    x3 = 3.3,     x4 = 2.5    etc....
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Describing the “Location” of a 
Data Set
• Mean: the numerical average
• Median: the middle value (if n odd) 

or the average of the middle two 
values (n even)

Symmetric: mean = median
Skewed Left: usually mean < median
Skewed Right: usually mean > median
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Pictures from Helsel &Hirsch:
Data values skewed to the right
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Bell-shaped distribution
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Determining the Mean and Median

The Mean

where            means “add together all the values”∑ ix
n

x
x i∑=

The Median
If n is odd: Median =  middle of ordered values.

Count (n + 1)/2 down from top of ordered list.
If n is even: Median =  average of middle two ordered 

values. Average the values that are (n/2) and (n/2) + 1 
down from top of ordered list.
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• Mean (numerical average): 327.0

• Median: 190 (halfway between 180 and 200)

• Mode (most common value): no single mode

The Mean, Median, and Mode

Ordered Listing of 16 Benzene values (Rong)
3.8, 35, 38, 55, 110, 120, 130, 180, 
200, 230, 320, 340, 480, 810, 980, 1200

Median (190, half of area) 
vs Mean (327, balance point)

Skewed to Right
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The Influence of Outliers 
on the Mean and Median

•Larger influence on mean than median.
•High outliers and data skewed to the right will 
increase the mean. 
•Low outliers and data skewed to the left will 
decrease the mean.

Ex: Suppose ages at death of your eight great-
grandparents are: 28, 40, 75, 78, 80, 80, 81, 82. 

Mean age is 544/8 = 68 years old
Median age is (78 + 80)/2 = 79 years old
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Caution: Confusing Normal with Average

Common mistake to confuse “average” with “normal”.
Is woman 5 ft. 10 in. tall 5 inches taller than normal??

Article had thermometer showing “normal high” for the day 
was 84 degrees.  High temperature for Oct. 1st is quite 
variable, from 70s to 90s. While 101 was a record high, it was 
not “17 degrees higher than normal” if “normal” includes the 
range of possibilities likely to occur on that date.

Example: How much hotter than normal is normal?
“October came in like a dragon Monday, hitting 101 degrees in Sacramento by 
late afternoon.  That temperature tied the record high for Oct. 1 set in 1980 – and 
was 17 degrees higher than normal for the date. (Korber, 2001, italics added.)”
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Describing Spread (Variability): 
Range, Interquartile Range and 
Standard deviation

• Range = high value – low value
• Interquartile Range (IQR) = 

upper quartile – lower quartile = 
Q3 - Q1 (to be defined)

• Standard Deviation (most useful 
for bell-shaped data)

Benzene Example, n = 16
3.8, 35, 38, 55, 
[Q1 = (55+110)/2 = 82.5]
110, 120, 130, 180, 
[Median = 190]
200, 230, 320, 340, 
[Q3 = (340+480)/2 = 410]
480, 810, 980, 1200

• Median = 190 has half of the values above, half below
• Two extremes describe spread over 100% of data

Range = 1200 – 3.8 = 1196.2
• Two quartiles describe spread over middle 50% of data

Interquartile Range = 410 – 82.5 = 327.5

Five number summary
190

82.5 410
3.8 1200
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Finding Quartiles “by hand”
Split the ordered values at median: 
•half at or below the median (“at” if ties)
•half at or above the median
Q1 = lower quartile 

= median of data values
that are (at or) below the median

Q3 = upper quartile
= median of data values 

that are (at or) above the median
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Hands-On Activity #1
Data and details on activity sheet

• For the San Francisco effluent nickel data:
– Find a 5-number summary 
– Draw a boxplot

• What can be concluded about shape from 
the boxplot?
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Results given in class

• Five number summary:

• Boxplot:

• Shape:
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Percentiles

The kth percentile is a number that has 
k% of the data values at or below it and 
(100 – k)% of the data values at or above it. 

• Lower quartile: 25th percentile
• Median: 50th percentile
• Upper quartile: 75th percentile

Day 1, Morning, Slide 56

Describing Spread (Variability): 

• Range = high value – low value

• Interquartile Range (IQR) = 
upper quartile – lower quartile = 
Q3 - Q1 

• Standard Deviation – most 
useful for bell-shaped data
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Describing Spread 
with Standard Deviation

Standard deviation measures variability 
by summarizing how far individual 
data values are from the mean.

Think of the standard deviation as 
roughly the average distance 
values fall from the mean. 
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Describing Spread with Standard 
Deviation: A very simple example

Both sets have same mean of 100.
Set 1: all values are equal to the mean so there is 

no variability at all.  
Set 2: one value equals the mean and other four values 

are 10 points away from the mean, so the average 
distance away from the mean is about 10.

Numbers Mean Standard Deviation
100,100,100,100,100 100 0
90, 90,100,110,110 100 10
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Formula for the (sample) standard deviation:

The value of s2 is called the (sample) variance. 
An equivalent formula, easier to compute, is:

Calculating the Standard Deviation

( )
1

2

−
−

= ∑
n

xx
s i

1

22

−
−

= ∑
n

xnx
s i

Step 1: Calculate      , the sample mean. Ex:     = 100
Step 2: For each observation, calculate the difference 

between the data value and the mean. 
Ex: -10, -10, 0, 10, 10

Step 3: Square each difference in step 2. 
Ex: 100, 100, 0, 100, 100

Step 4: Sum the squared differences in step 3, and then 
divide this sum by n – 1. Result = variance s2

Ex: 400/(5 – 1) = 400/4 = 100
Step 5: Take the square root of the value in step 4. 

Ex: s = standard deviation = 

Calculating the Standard Deviation
Example: 90, 90, 100, 110, 110

x x

10100 =
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Data sets usually represent a sample from a larger 
population. If the data set includes measurements for 
an entire population, the notations for the mean and 
standard deviation are different, and the formula for 
the standard deviation is also slightly different. 
A population mean is represented by the Greek µ
(“mu”), and the population standard deviation is 
represented by the Greek “sigma” (lower case)

Population Standard Deviation

( )
n

xi∑ −
=

2µ
σ
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Bell-shaped distributions
• Measurements that have a bell-shape are so 

common in nature that they are said to have a 
normal distribution.

• Knowing the mean and standard deviation 
completely determines where all of the values 
fall for a normal distribution, assuming an 
infinite population!

• In practice we don’t have an infinite population 
(or sample) but if we have a large sample, we 
can get good approximations of where values 
fall.
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Examples of bell-shaped data

• Women’s heights 
mean = 64.5 inches, s = 2.5 inches

• Men’s heights
mean = 70 inches, s = 3 inches

• IQ scores
mean = 100, s = 15 (or for some tests, 16)

Women’s heights, n = 94 students
Note approximate bell-shape of histogram
“Normal curve” with mean = 64.5, s = 2.5 

superimposed over histogram
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Mean = 64.5
Mean 64.5
StDev 2.5
N 94

Histogram of Women's Heights
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Interpreting the Standard Deviation 
for Bell-Shaped Curves: 

The Empirical Rule

For any bell-shaped curve, approximately 
• 68% of the values fall within 1 standard 

deviation of the mean in either direction 
• 95% of the values fall within 2 standard 

deviations of the mean in either direction
• 99.7% (almost all) of the values fall within 3 

standard deviations of the mean in either 
direction

Ex: Population of women’s heights
• 68% of heights are between 62 and 67 inches
• 95% of heights are between 59.5 and 69.5 inches
• 99.7% of heights are between 57 and 72 inches
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Women’s Heights: How well does the 
Empirical Rule work?
Mean height for the 94 students was 64.5, and the 
standard deviation was 2.5 inches. Let’s compare 
actual with ranges from Empirical Rule:

Range of 
Values:

Empirical 
Rule 

Actual 
number

Actual 
percent

Mean ± 1 s.d. 
68% in 
62 to 67

70
70/94
= 74.5%

Mean ± 2 s.d.
95% in 
59.5 to 69.5

89
89/94
= 94.7%

Mean ± 3 s.d.
99.7% in
57 to 72

94
94/94
= 100% Day 1, Morning, Slide 68

The Empirical Rule, the Standard 
Deviation, and the Range

• Empirical Rule tells us that the range from the 
minimum to the maximum data values equals 
about 4 to 6 standard deviations for data sets 
with an approximate bell shape. 

• For a large data set, you can get a rough idea 
of the value of the standard deviation by 
dividing the range by 6 (or 4 or 5 for a smaller 
dataset) 

6
Ranges ≈
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Standardized z-Scores
Standardized score or z-score:

deviation Standard
Mean valueObserved −

=z

Example: UCI Verbal SAT scores had mean = 569 
and s = 75. Suppose someone had SAT = 674:

674 569 1.40
75

z −
= = +

Verbal SAT of 674 for UCI student is 1.40 standard 
deviations above the mean for UCI students.
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Verbal SAT of 674 is 1.40 standard deviations above mean. 
To find proportion above or below, use Excel or R Commander

Verbal SAT Score
674569

About 8% above 674

Normal, Mean=569, StDev=75
Verbal SAT scores for UCI students

About 92% below 674
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The Empirical Rule Restated for 
Standardized Scores (z-scores):

For bell-shaped data, 
• About 68% of the values have 

z-scores between –1 and +1. 
• About 95% of the values have 

z-scores between –2 and +2. 
• About 99.7% of the values have 

z-scores between –3 and +3. 
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HANDS ON, USING 
R COMMANDER

Day 1, Afternoon
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Using R Commander
• “R” is a sophisticated and free statistical 

programming language.
• R Commander is an add-on, also free, that is 

menu-driven. It doesn’t do everything R does.
• Website for installing R: 

http://www.r-project.org/
• To install R Commander: Open R, then type:
> install.packages("Rcmdr", dependencies=TRUE)

• Wait until it finishes.
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Opening R and R Commander

• Click on the R icon on the desktop to open R.
• At the prompt, type

>library(Rcmdr)
OR go to the R menu Packages → Load package 

scroll down to Rcmdr, and click “OK”
• R Commander should open in a new window.
To close them, in R Commander go to 
File→ Exit→ From Commander and R
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Entering Data by Hand
Data → New data set
• Enter a name for the data set, click “OK”
• A spreadsheet should pop up. Click on “var1” in the 

upper left, type a name (e.g. benzene), click numeric, 
then X out the name box.

• Enter the data into the first column of the spreadsheet.
Example: Enter the 16 Benzene values (Rong)

3.8,  35,  38,  55, 
110, 120, 130, 180,
200, 230, 320, 340, 
480, 810, 980, 1200
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Save data, then try some graphs
• Verify correct entry “View data set”
• Save the data set for later:
Data → Active data set → Save active data set 
• Histogram of benzene (Graphs → Histogram)

– Note that it appears in a separate window
• Stem and leaf plot of benzene
• Boxplot of benzene
• Graphs → Save graph to file → Bitmap → jpeg
• What did you learn about the benzene data from 

the graphs?
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Numerical summaries
Statistics → Summaries → Numerical summaries
Results: Q1    Median   Q2
mean     sd 0%   25%   50%   75% 100%  n
326.9875 362.2683 3.8 96.25  190  375  1200 16

• Note that the quartiles differ slightly from the ones 
computed “by hand” which were 82.5 and 410. 

• The formula R uses for quantiles is i = 1+q(n−1), 
where i is the ordered rank of the q quantile. Here,      
n = 16 and q = .25, so i = 4.75

• If i is not an integer, a weighted average is used. In this 
case, .75 of distance from 55 to 110.
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Benzene data, continued
Interpreting the Results:
mean     sd 0%   25%   50% 75% 100%  n
326.9875 362.2683 3.8 96.25 190 375  1200 16

• From mean and standard deviation alone, we can 
tell that the distribution is not bell-shaped!

• What is it that lets us know that?
• What does the 5 number summary tell us?
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Transforming variables
For reasons more clear later, we would like 

natural log of benzene.
Data → Manage variables in active data set 
→ Compute new variable

Under New variable name put LnBenzene
Under Expression to compute put 

log(Benzene)
View data set to make sure it worked!
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Now do graphs on LnBenzene

• Histogram
• Stem and leaf plot
• Box plot

What do you notice about the shape of 
Benzene compared to LnBenzene?
See next slide for histograms.
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Benzene versus Ln(Benzene)

Day 1, Afternoon, Slide 11

Importing Data into R Commander
Data → Import data
You can import data from the following sources:
• Text file in a folder on your computer
• Clipboard
• Internet URL
• SPSS Data sets created by these
• Minitab statistical software packages
• Stata
• Excel
• Access
• dBase
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Example to Import from Excel
• Data from H&H, years from 1925 to 1989, Annual 

peak discharge, Saddle River, NJ, variable name is 
“Flow” (cubic feet/sec)

• Data → Import data → From Excel, Access...
• Enter a name (e.g. SaddleRiver), click “OK”
• Local files will pop up; find file “EnvStatData”, click 

“Open”, then in the pop up box “Select one table”
click on “SaddleRiver”

• Click View data set to make sure it worked. You 
should see columns labeled “Year” and “Flow”
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“View data set” should 
show something like this.

First column is Year
Second column is Flow

Don’t forget to save the data set:
Data → Active data set 
→ Save active data set
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Summaries for Bivariate Data

• “Bivariate” = two variables measured on each 
“unit.”

• Often there is a natural designation of one as 
“explanatory” variable and one as “response”
variable.

• In plots, x = explanatory, y = response
• Saddle River Example:

Year = x = explanatory
Flow = y = response
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Bivariate Data: Visual Summaries

• Most general is a “scatter plot”
• If x = time (such as year) can do a line graph, 

which connects the dots across time.
Graphs → Line graph

• For scatter plot, can add “least squares line”
and/or “lowess* smoother”
Graphs → Scatterplot

*lowess = locally weighted scatterplot smoother
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Line graph
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Scatter plot with least squares line and smoother
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What to notice in a scatterplot:
• If the average pattern is linear, curved, 

random, etc.
• If the trend is a positive association or a 

negative association
• How spread out the y-values are at each 

value of x (strength of relationship)
• Are there any outliers – unusual 

combination of (x, y)? 
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Saddle River Example

• Somewhat linear
• Positive association
• Quite spread out 
• A few possible 

outliers (1945 in 
particular, shown in 
blue)
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Bivariate data: Numerical summaries
• Algebra Review (Linear relationship)
• Equation for a straight line:

y = b0 + b1x
b0 = y-intercept, the value of y when x = 0
b1= slope, the increase in y when x goes up by 1

• Example: One pint of water weighs 1.04 pounds. (“A 
pint’s a pound the world around.”)

• Suppose a bucket weighs 3 pounds. Fill it with x pints 
of water. Let y = weight of the filled bucket.

• How can we find y, when we know x?
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Water and weight example: A 
deterministic relationship

b0 = y-intercept, the value of y when x = 0
This is the weight of the empty bucket, so b0 = 3
b1 = slope, the increase in y when x goes up by 1 

unit; this is the added weight for adding 1 pint of 
water, i.e. 1.04 pounds.

The equation for the line: 
y = b0 + b1x 

y = 3 + 1.04 x
x = 1 pint → y = 3 + 1.04(1) = 4.04 pounds
x = 2.5 pints → y = 3 + 1.04(2.5) = 5.6 pounds

Day 1, Afternoon, Slide 22

Statistical Relationship
• In a statistical relationship there is variation in 

the possible values of y at each value of x. 
• If you know x, you can only find an average or 

approximate value for y.
• Regression equation – to describe the “best”

straight line through the data, and predict y, 
given x in the future.

• Correlation coefficient – to describe the strength 
and direction of the linear relationship
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Saddle River: Numerical Summary
• Regression equation:

Predicted flow = −58299 + 30.65 (Year)
Example: Predict flow value for 1980:
−58299 + 30.65(1980) = −58299 + 60687 = 2388
Actual for 1980: 2470

• Correlation between year and peak 
discharge is .626

• Will do more with these on Day 3.
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R Commander: Regression and Correlation
Statistics → Fit Models → Linear Regression
• Identify the Response variable and Explanatory variable (Ex: 

Flow, Year)
• Partial Results:
Coefficients:

Estimate Std. Error t value Pr(>|t|)    
(Intercept) -58299.189   9417.584  -6.190 5.02e-08 ***
Year            30.647      4.812   6.369 2.48e-08 ***

Statistics → Summaries → Correlation matrix [Highlight variables]
Flow      Year
Flow 1.0000000 0.6258355
Year 0.6258355 1.0000000
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Other Software Options
• See “Resources for Learning about Statistics 

& Data Analysis” by Steve Saiz for options 
specific to State and Regional Water Board

• Excel has some basic statistics options
• Commercial packages are expensive, but very 

powerful (Minitab, SAS, SPSS, etc.)
• Highly recommended website:

www.statpages.org
Has links to hundreds of free statistics websites.
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Hands-On Activity: 
www.statpages.org

Details to be given in class
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Random Variables
• A random variable is a numerical outcome 

of a “random” circumstance.
• Examples:

– Rainfall in Sacramento on a randomly selected 
day in January.

– Nickel concentration in a random grab sample.
– Specific capacity of a randomly selected well in 

limestone in Pennsylvania
– Weight of a randomly selected fish
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Probability Distributions
• Before it’s measured, a random variable 

has a bunch of possible values it could be.
• The range of possible values and their 

associated probabilities make up the 
probability distribution for the random 
variable.

• In many cases the possibilities are anything 
on a continuum: A continuous probability 
distribution. Those will be our focus.
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Examples on next few slides
• Normal distribution: Symmetric, very common in 

nature, often required for statistical procedures.
• Lognormal distribution: A random variable x has a 

lognormal distribution if log of x has a normal 
distribution. Skewed to the right.

• Exponential distribution: Often used to model 
waiting times between events (and has other uses).

R Commander will draw these for you:
Distributions → Continuous Distributions → [Choose] 
→ Plot ...
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Here, log(x) is normal with 
Mean = 0 and s.d. = 0.5.
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Probability Distributions as Models
• Statistician George Box “Essentially no 

models are correct, but some are useful.”
• It is useful to “model” data as fitting a 

particular distribution.
• Common to use normal distribution.
• For skewed to the right, can use log normal. 
• If x is log normal, then do transformation to 

get y = log(x), and y is normal.

Simulated data, 100 lognormal observations

Simulated data, 100 normal observations Simulated data, 1000 normal observations
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Simulated data, 100 exponential observations
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Testing for Fit: A Q-Q Plot

• Q = quantile
• Compare actual data (smallest, next 

smallest, up to largest) with what would be 
expected for a normal distribution.

• Plot these; if “normal distribution” is a good 
model, should see approximately a straight 
line.
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Q-Q Plot, normal data, n = 1000
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Q-Q Plot, log normal data, n = 100
Obvious problems!

Do log transformation, then redo plot –
looks much better
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Shapiro-Wilk Test of Normality
Null hypothesis: Normal model is good

Statistics → Summaries → Shapiro Wilk...
Results for the log normal sample (reject null):
Shapiro-Wilk normality test

data:  LogNormalSamples$obs

W = 0.8702, p-value = 7.152e-08

Results after log transform (don’t reject null):
data:  LogNormalSamples$logobs
W = 0.9896, p-value = 0.6348
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Caution about using a formal test
• A small p-value implies problems with using 

normal model, but a large p-value does not
mean we can accept the normal assumption. 

• Especially a problem for small sample size, 
because test has low “power.”

• Will explain more when we cover hypothesis 
testing.
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Summary
• Graphs and summary statistics are useful:

– For understanding a data set on its own
– For checking whether appropriate model holds, 

such as “normal distribution” or “linear 
relationship,” required for doing further analysis

• If model does not seem appropriate, creating 
a “transformed variable” may work.
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Hands-On Activity: 
To be given in class



Day 2, Morning, Slide 1

Day 2, Morning
Statistical Intervals
Hypothesis Tests
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Statistical Inference
• Population and samples
• Remember, to use sample data for inference, 

needs to be representative of population for 
the question(s) of interest.

• Some definitions:
– A parameter is a number associated with a 

population. Assumed to be fixed but unknown.
– A statistic is a number computed from a sample. 

Changes with each new sample.
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Statistical Inference: Intervals
• Estimate a parameter using sample data.

– Point estimate: A single number.
– Interval estimate (aka confidence interval): An 

interval of values we are fairly confident covers 
the true population parameter.

• Find an interval that is likely to cover a 
specified percentage of new values from the 
same population
– This is a prediction interval.
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Statistical Inference: Hypothesis Tests

• Test whether a parameter = a specific value, 
versus either not equal, greater than, or less 
than that value.

• Special case: In regression, test whether the 
slope of the line = 0, meaning there is no 
linear relationship between x and y.

• Compare populations, for instance to see if 
means for several populations are equal.
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Parametric and Nonparametric
• Parametric methods (bit of a misnomer):

– Based on assuming a particular underlying population 
distribution, usually “normal.”

– Can sometimes be used even without that assumption, for 
large samples.

• Nonparametric methods: 
– Can be used without assuming a distribution.
– Often not as “powerful” as parametric methods.

• When in doubt, safer to use nonparametric method
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Confidence Intervals
• A parameter is a population characteristic – value 

is usually unknown. We estimate the parameter using 
sample information. 

• A statistic, or estimate, is a characteristic of a sample. 
A statistic estimates a parameter.

• A confidence interval is an interval of values 
computed from sample data that is likely to include 
the true population value. 

• The confidence level (often .95) for an interval describes 
our confidence in the procedure we used. We are 
confident that most of the confidence intervals we 
compute using our procedure will contain the true 
population value.



Hands-On Activity

• Applet to demonstrate confidence interval 
concepts

http://www.rossmanchance.com/applets/New
Confsim/Confsim.html

• Details on activities handout
• Note that on average, about 19 out of 20 of 

all 95% confidence intervals should cover 
the true population value.
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Example: pH of Rain in Davis
1980 to 2009; what is population mean?
Sample size = 30, reasonably bell-shaped
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Confidence interval for mean
• Assume population is close to normal.
• Also works if n is large (30 if no outliers or 

major skew, perhaps 50 or so if more skewed)
• Based on knowledge of sampling distribution 

of the sample mean.
• Sampling distribution gives range and 

probability distribution for all possible sample 
means if infinite number of samples of size n 
taken from the population. 
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Notation for Means, Quantitative Variables

• Take sample of size n from a population and 
measure a quantitative variable. 

• Notation for Population (uses Greek letters):
µ = mean for the population of measurements. 
σ = standard deviation for the population.

• Notation for Sample:
= sample mean for a sample of n individuals.

s = sample standard deviation for the sample.
x
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Sampling Distribution 
of the Sample Mean

• Suppose the distribution of possible values 
is normal with mean µ and standard 
deviation σ and/or n is large.

• The distribution of possible values for the 
sample mean      is normal with mean µ and 
standard deviation 

x

n
σ

Day 2, Morning, Slide 12

Example: pH values in Rainfall
• Suppose individual pH values in annual 

rainfall in a certain area are from a normal 
distribution with µ = 5.6 and σ = 0.5. 
– From Empirical rule, almost all individual

values are with 3(0.5) = 1.5 of mean,
– In range 5.6 +/- 1.5, or 4.1 to 7.1

• Mean pH for n = 25
– normally distributed with mean µ = 5.6 and 

standard deviation =  σ/    = 0.5/5 = 0.1
– Mean almost always in the range 5.6 +/- 0.3, or 

5.3 to 5.9.

n



7.16.66.15.65.14.64.1
pH

0.5
0.1

StDev

Comparing individual pH values with Mean pH for n=25

Mean of 25 pH values

Individual pH values

Also, from Empirical Rule, about 95% of sample 
means in range 5.4 to 5.8. 
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Confidence Interval for Mean µ

• Suppose we know population s.d. σ = .5, and we 
have one sample mean      = 5.67.

• For n = 25, 95% of the time     is within 2(.1) = .2 of 
the true mean µ.

• If this is one of those times, then we know µ and      
are no more than 0.2 apart. 

• So, we guess that µ is in the interval 5.67 ± .2 or 
5.47 to 5.87.

• We have just found a 95% confidence interval for µ.

x
x

x
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Student’s t-Distribution:
Replacing σ with s

If the sample size n is small, 
this standardized statistic will 
not have a normal distribution 
but rather a t-distribution with 
n – 1 degrees of freedom (df).

Dilemma: we generally don’t know σ.  Using s we have:

( )
/

x n xt
ss n

µ µ− −
= =
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General Formula, C.I. for a Mean

* sx t
n

± ×

Explanation of the pieces:
= sample mean

t* = value from “t distribution”
s = sample standard deviation

x
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Finding the t-multiplier
• R Commander:

Distributions → Continuous distributions 
→ t distribution → t quantiles
– Probabilities: For 95% C.I., use .025
– Degrees of freedom = n – 1
– Lower tail
– Gives negative of the t-multiplier
– Ex: .025, 25, lower tail → −2.059539, 

multiplier ≈ 2.06
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Using R Commander to find a 
confidence interval for a mean directly

• R Commander links tests and confidence 
intervals.
Statistics → Means → Single sample t-test

• Give desired confidence level (most common is 
.95, but sometimes use .90 or .99)

• Ignore remaining options for now (they are for 
hypothesis tests).
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Activity: Find 90% C.I. for mean pH 
for Davis rainfall

• Import data from Excel: DavisRain
• Find a stem and leaf plot. Does it look 

approximately normal?
• Find a 90% confidence interval for the 

mean. (Use pH, change level to .90)
Statistics → Means → Single sample t-test
• Interpret the interval. What mean is it for?
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Results should look like this
1 | 2: represents 0.12
leaf unit: 0.01

n: 30
54 | 79
55 | 
56 | 1
57 | 09
58 | 26788
59 | 1578
60 | 34456678
61 | 0133
62 | 247
63 | 3

90 percent confidence 
interval:
5.906136 6.036531 

sample estimates:
mean of x 
5.971333
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Suppose lognormal is better model

• Note that for normal distribution, mean = 
median. So, a C.I. for the mean is also a C.I. 
for the median.

• Not true for lognormal distribution (mean ≠
median). We will find C.I. for median, not 
mean.

• Basic idea: Transform data using y = log(x), 
find C.I., transform back.
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Rationale
• Suppose variable x has lognormal distribution. 
• Then y = log(x) has normal distribution.
• mx = median(x), value with 50% of x below it.
• my = median(y) = value with 50% of y’s 

below it. 
• my = log(mx), i.e. can find 50% point and then 

take log or take logs then find 50% point.
• This is not true for the means. Mean of log(x) 

is not the same as log of mean(x).
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Rationale, continued
Want C.I. for median(x) = mx

• Find 95% C.I. for mean of y, same as median of 
y, my. (Remember, y’s are normal.)

• Remember that my = log(mx)
• Suppose interval is L to U. We are 95% 

confident that L < my < U, or L < log(mx) < U
• So 95% confident that exp(L) < mx < exp(U)
• So 95% confidence interval for mx exp(L) to 

exp(U)
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To Summarize

• Transform x’s by using y = log(x) 
(Natural log)

• Find 95% confidence interval for mean 
(median) of y, using t interval as before

• Transform endpoints of interval using 
exponential function.

• Result is a 95% confidence interval for the 
median of x.
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Activity: Benzene data
• Import data from Excel: Benzene
• Look at histogram to see right skewed.
• Create new variable, logBenz
Data → Manage variables in → Compute new...

logBenz is created as log(Benzene)
• Find 95% confidence interval for mean of 

logBenz. Should get 4.29842 to 5.85981
• Use calculator to find exp(4.29842) to 

exp(5.85981) is 73.583 to 350.658
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Benzene example, continued

• 95% confidence interval for population 
median benzene is 73.583 to 350.658.

• If we had used normal model assumption on 
original benzene data, 95% confidence 
interval for the mean would be 133.9483 to 
520.0267.

• Remember that mean is 327, median is 190, 
so they are very different.
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Activity
• Import the Saddle River data from Excel file.
• Investigate the shape of the “Flow” variable.
• Compare the sample mean and sample median.
• Get a 95% confidence interval for the mean.
• Transform and get a 95% confidence interval for 

the median that way.
• Results: C.I. for mean: (1447.787, 1906.644)

C.I. for median: exp(7.134264, 7.413504), which 
is (1254.21, 1658.23)
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Prediction Interval

• A prediction interval is an interval predicted 
to include a new observation from the same 
population with specified probability.

• Example: A 90% confidence interval for the 
mean pH for Davis rainfall is 5.91 to 6.04.

• What interval do we predict 90% of future 
individual values to fall in, assuming the past 
and future represent the same population?
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Nonparametric Prediction Interval

• Suppose there are 30 observations. What is 
the probability that a new, 31st observation, 
will fall between the minimum and 
maximum of the first 30 observations?

• Probability that the 31st observation will be 
the largest is 1/31. Similarly, probability that 
it will be the smallest is 1/31. So probability 
that it will not be largest or smallest is 29/31. 

• Thus, the interval (min to max) is a 29/31 or 
93.5% prediction interval. 
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Nonparametric P.I., continued
• In general, if there are n observations, then (min to 

max) is a (n – 1)/(n + 1) prediction interval.
• Reasoning can be extended. For a (1 – α) P.I., find c 

= (α/2)(n + 1). Then the interval is the the c-th 
smallest to c-th largest observation.

• Ex: 90%, α = .10. For n = 30, c = (.05)(31) = 1.55. 
Interpolate, or roughly, use 1.5th smallest and 
largest.

• Davis pH data: Lower end, halfway between 1st and 
2nd smallest (5.47+5.49)/2=5.48. Upper end, 
halfway between 6.27 and 6.33, or 6.30.



Hands-On Activity

• Find a 90% prediction interval for a new 
value based on the San Francisco effluent 
nickel data. 

• There are 39 observations
• Lowest 3 observations are 1.9, 2.0, 2.1
• Highest 3 observations are 3.7, 3.9, 4.4
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Parametric P.I., assuming normal

• If we knew µ and σ, then 95% P.I would be 
about µ ± 2σ. 

• More complicated otherwise.
– Because of estimating µ, need to add same 

variability we use to get C.I. for µ .
– Because of estimating σ, need to use t* as 

multiplier instead of 2.
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Parametric P.I., continued

Prediction interval is
1* 1x t s
n

± +

where t* is chosen so the area above it is 
α/2 in a t-distribution with degrees of 
freedom = n – 1. There is no easy way to do 
this in R Commander, but see next slide.
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Using C.I. to find P.I.

Recall, a confidence interval is 
Prediction interval is

1 1* 1 * * 1n sx t s x t s x t n
n n n

+
± + ⇒ ± ⇒ ± +

So if you have a C.I. for µ:
• Find the “half-width” (part after the ± sign)
• Multiply it by           to get half-width for P.I.
• Add and subtract that half-width to 

1n +
x

* sx t
n

±
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Davis pH Example
• R Commander gave 90 percent confidence 

interval as 5.906136 to 6.036531and mean of x 
as 5.971333. 

• From these, easy to see half-width is .0652.
•
• So a 90% P.I. is 5.971 ± .363 or 5.608, 6.334
• Nonparametric version was 5.55 to 6.30.
• Note that P.I. is much wider than C.I for mean.

(.0652) 31 .3630=
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Basics of Hypothesis Testing
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Basic Steps for  
Testing Hypotheses

1. Determine the null hypothesis 
and the alternative hypothesis.

2. Collect data and summarize with a 
single number called a test statistic.

3. Determine how unlikely test statistic 
would be if null hypothesis were true.

4. Make a statistical decision.
5. Make a conclusion in context.
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Step 1. Determine the hypotheses.

• Null hypothesis—hypothesis that 
says nothing is happening, status quo, 
no relationship, chance only, parameter 
equals a specific value (called “null value”).

• Alternative (research) hypothesis —
hypothesis is usually the reason data being 
collected;  researcher suspects status quo 
belief is incorrect or that there is a 
relationship or change, or that the “null 
value” is not correct.
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Class Input and Discussion
Share examples of hypothesis testing 
situations for your job:

• What was the question of interest?
• What were the null and alternative 

hypotheses?
• What kind of data did you have 

available to make a decision?
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Example (analogy):  A Jury Trial
If on a jury, must presume defendant is innocent 
unless enough evidence to conclude is guilty. 

Null hypothesis: Defendant is innocent.
Alternative hypothesis: Defendant is guilty.

• Trial held because prosecution believes status 
quo of innocence incorrect. 

• Prosecution collects evidence, like researchers 
collect data, in hope that jurors convinced such 
evidence extremely unlikely if assumption of 
innocence were true.
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Step 2. Collect data and 
summarize with a test statistic.

Decision in hypothesis test based on single 
summary of data – the test statistic. Often this is 
a standardized version of the point estimate.

Step 3. Determine how unlikely test statistic   
would be if null hypothesis true.

If null hypothesis true, how likely to observe sample 
results of this magnitude or larger (in direction of 
the alternative) just by chance? … called  p-value.
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Step 4. Make a Statistical Decision.
Choice 1: p-value not small enough to convincingly 

rule out chance. We cannot reject the null 
hypothesis as an explanation for the results. 
There is no statistically significant difference
or relationship evidenced by the data.

Choice 2: p-value small enough to convincingly 
rule out chance. We reject the null hypothesis
and accept the alternative hypothesis. There is a 
statistically significant difference or relationship 
evidenced by the data.

How small is small enough?  
Standard is 5%, also called level of significance.
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What Can Go Wrong:
The Two Types of Errors

Courtroom Analogy: Potential choices and errors

Choice 1: We believe  we have enough evidence to conclude 
the defendant is guilty. 
Potential error:  Defendant is innocent; an innocent person 
falsely convicted and guilty party remains free.

Choice 2: We cannot rule out that defendant is innocent, 
so he or she is set free without penalty.
Potential error: Defendant is guilty; a criminal has been 
erroneously freed.

Choice 2 is usually seen as more serious.
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Medical Analogy: False Positive vs False Negative

Tested for a disease; most tests not 100% accurate.

Choice 1: Medical practitioner thinks you have disease.    
Test result strong enough to be “positive” for disease.
Potential error: You are healthy but told you’re diseased. 
Your test was a false positive.

Choice 2: Medical practitioner thinks you are healthy.    
Test result weak enough to be “negative” for disease.
Potential error:  You have disease but told you do not. 
Your test was a false negative.

Which is more serious? Depends on disease and consequences.

Null hypothesis: You do not have the disease.
Alternative hypothesis: You have the disease.
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The Two Types of Errors in Testing

• Type 1 error can only be made if the 
null hypothesis is actually true.

• Type 2 error can only be made if the 
alternative hypothesis is actually true.
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Class Input and Discussion
In hypothesis tests for your job:

• What are the null and alternative 
hypotheses?

• What would be the conclusion in context 
if the null hypothesis were rejected?

• What would be a Type 1 error?
• What would be a Type 2 error?
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Probabilities Associated with Errors

• If  the null hypothesis is true, probability of making 
a type 1 error is equal to the level of significance, 
usually 0.05. 

• If the null hypothesis is not true, a type 1 error 
cannot be made.

We can only specify the conditional probability of 
making a type 1 error, given that the null 
hypothesis is true.  That probability is called the 
level of significance, usually 0.05.

Level of Significance and Type I Errors
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Probabilities Associated with Errors

• A type 2 error is made if the alternative hypothesis 
is true, but you fail to choose it. 

• A type 2 error can only be made if the alternative 
is true.

• The probability of doing that depends on which 
part of the alternative hypothesis is true, so 
computing the probability of making a type 2 error 
is not feasible unless a specific value in the 
alternative is specified.

Type 2 Errors
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Probabilities Associated with Errors

• The power of a test is the probability of making 
the correct decision when the alternative 
hypothesis is true.  

• Power = 1 – P(Type 2 error)
• If the population value falls close to the value 

specified in null hypothesis, then it can be difficult 
to get enough evidence from the sample to 
conclusively choose the alternative hypothesis, so 
low power if null and truth are close.

The Power of a Test
Type 2 Errors and Power

Three factors that affect probability of a type 2 error
1. Sample size; larger n reduces the probability of a 

type 2 error without affecting the probability of a 
type 1 error.

2. Level of significance; larger α reduces probability 
of a type 2 error by increasing the probability of a 
type 1 error.

3. Actual value of the population parameter; (not in  
researcher’s control). Farther truth falls from null 
value (in direction of alternative), the lower the 
probability of a type 2 error.

Power curves, one-sided t-test for one mean; effect 
size = mean difference/s.d. (from Mind On Statistics)

51 Day 2, Morning, Slide 52

• If consequences of a type 1 error are very serious, 
then only reject null hypothesis if the p-value is very 
small.

• If type 2 error more serious, should be willing to 
reject null hypothesis with a moderately large p-
value, 0.05 to 0.10.

Possible Errors and Level of Significance

In deciding whether to reject the null hypothesis 
consider the consequences of the two potential 
types of errors. 

Truth, decision, errors, probabilities
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Real Importance versus 
Statistical Significance

A statistically significant relationship or difference 
does not necessarily mean an important one. 

Whether results are statistically significant or not, it 
is helpful to examine a confidence interval so that 
you can determine the magnitude of the effect. 

From width of the confidence interval, also learn 
how much uncertainty there was in sample results.
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Role of Sample Size 
in Statistical Significance

If the sample size is large enough, almost 
any null hypothesis can be rejected. 
There is almost always a slight relationship 
between two variables, or a difference 
between two groups, and if you collect 
enough data, you will find it.
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No Difference versus No 
Statistically Significant Difference

• If the sample size is too small, an important 
relationship or difference can go undetected. 

• In that case, we would say that the power
of the test is too low.

• This is more likely to be a problem with your 
data than the other issue (statistical 
significance but not practical significance.
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Finding Appropriate Sample Size 
and/or Power

• Specify what you think the truth is for the 
population.

• Specify the level of significance you plan to 
use (usually .05)

• Specify what power you want (probability of 
detecting the “truth” you specified above).

• Alternatively, specify what sample size you 
can afford, and compute power.
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Resources and Example
• R Commander doesn’t calculate power.
• Some good links at www.statpages.org
• Example (Carrie Austin): Compare mercury 

in Walker Creek delta and other areas. 
Suppose true means and std. deviations are:

Walker Creek delta Other locations

Mean 1.6 .5
Std Dev 1.1 .3
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Link from statpages.org to Power, sample size, for two 
groups and click on first entry.

http://www.dssresearch.com/toolkit/sscalc/size_a2.asp

Result (next slide): Need n = 9 in each sample.

Used level of significance = .05 and power = .90.

Walker Creek delta Other locations

Mean 1.6 .5
Std Dev 1.1 .3
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Hands-On Activity

Instructions on Activities Handout
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Mercury in Tomales Bay

Data & Statistical Analysis for Training Academy
Carrie M. Austin, P.E.

San Francisco Bay Regional Water Board

Gambonini 
Mercury Mine 
drains to 
Walker Creek

Tomales Bay 
watershed

San 
Francisco 
Bay

Good reason to believe Tomales
Bay is polluted by mercury, because 
of Gambonini mercury mine on 
Walker Creek.
Data set is focused on the Walker 
Creek delta, shown in red (red = 
mercury & elevated concentrations)

Several previous studies

Average surface sediment (upper 5 cm) mercury
Error bars are two times the standard deviation.

3 to 5 samples per location. 

Except here
and no data here

Highest sediment 
[mercury]

Walker Creek delta

We focused our 
sediment sampling 
(brown) at opposite 
ends of Tomales Bay, 
shown in these insets, 
at  Walker & Lagunitas 
deltas, expecting them 
to be most different 
(and most biologically 
important)

Sediment Sampling
PLAN
• n = 8 for each of Walker Creek delta and 

Lagunitas Creek delta at head of bay, additional 
samples from along the bay

• Each sample composited in field from 4 
locations 1 meter apart

• Each delta sample collected in replicate 
within 100 meters (submitted individually to lab, 
then average results)

REALITY
• field error, n = 6, not 8, at Lagunitas
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Lagunitas DeltaWalker DeltaOther
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Total mercury in sediment (2009)
Walker Creek delta is obviously different, and 

“other” is similar to Lagunitas Creek delta
Is the difference statistically significant?

ACTIVITY
Compare total mercury in sediment from Walker 

Creek delta to “other” and 
“Lagunitas Creek delta” sites combined

• Load Walker Creek dataset 
• Recode Location so there is only “Walker delta” & “other”
Data → Manage variables in active... → Recode...
Click “Location” → New variable name (e.g. AllOther) →
Recode directives: "Lagunitas delta" = "other"
• Do boxplots of mercury, by groups using “AllOther”
• Do independent sample t-test to compare mercury; look at 

CI for difference.
• Create new variable: log(mercury) and repeat.



Mercury in Tomales Bay

Data & Statistical Analysis for Training Academy
Carrie M. Austin, P.E.

San Francisco Bay Regional Water Board



Gambonini 
Mercury Mine 
drains to 
Walker Creek

Tomales Bay 
watershed

San 
Francisco 
Bay

Good reason to believe Tomales
Bay is polluted by mercury, because 
of Gambonini mercury mine on 
Walker Creek.
Data set is focused on the Walker 
Creek delta, shown in red (red = 
mercury & elevated concentrations)



Several previous studies



Average surface sediment (upper 5 cm) mercury
Error bars are two times the standard deviation.

3 to 5 samples per location. 

Except here
and no data here

Highest sediment 
[mercury]

Walker Creek delta



We focused our 
sediment sampling 
(brown) at opposite 
ends of Tomales Bay, 
shown in these insets, 
at  Walker & Lagunitas 
deltas, expecting them 
to be most different 
(and most biologically 
important)



Sediment Sampling
PLAN
• n = 8 for each of Walker Creek delta and 

Lagunitas Creek delta at head of bay, additional 
samples from along the bay

• Each sample composited in field from 4 
locations 1 meter apart

• Each delta sample collected in replicate 
within 100 meters (submitted individually to lab, 
then average results)

REALITY
• field error, n = 6, not 8, at Lagunitas
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ACTIVITY:
Compare total mercury in sediment from Walker Creek 

delta to “other” and 
“Lagunitas Creek delta” sites combined

• Import dataset (comma separators):
www.ics.uci.edu/~jutts/data/WalkerDelta.txt
• Recode variables, give new name, use 

“Lagunitas Delta” = “other”
• Do boxplots (by groups) of mercury
• Do independent sample t-test to compare 

mercury; look at CI for difference.
• Create new variable: log(mercury) and repeat.
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Nonparametric Tests

Day 3, Morning

2

Reminder: Parametric and 
Nonparametric Procedures

• Parametric methods (bit of a misnomer):
– Based on assuming a particular underlying population 

distribution, usually “normal.”
– Can sometimes be used even without that assumption, for 

large samples.

• Nonparametric methods: 
– Can be used without assuming a distribution.
– Often not as “powerful” as parametric methods.

• When in doubt, safer to use nonparametric method

3

Review of Parametric Inference Procedures
• One sample t-test and confidence interval: 

– Estimate and test mean of one population
– Example: Is pH for Davis rainfall 5.6? Get C.I.

• Paired t-test and confidence interval:
– Estimate and test mean of differences for pairs
– Example: Pilots sober and with alcohol

• Independent samples t-test:
– Are the means of two populations equal? If not, what 

is a confidence interval for the difference?
– Example: Dolomite vs limestone wells
– Example: Mercury concentration in Tomales Bay

4

Sign Test: One Sample or Paired Data 
Example: Pilot and alcohol data. Are population 

differences equally likely to be positive or 
negative? Or more likely to be positive?

5

Five Steps in Hypothesis Test

Step 1: Null and alternative hypotheses
Two ways to state these: 
1. One sample or sample of differences, want to test 

specific value for the population median M. 
Null: H0: M = M0

Alternative: Ha: M > M0  or Ha: M < M0  or Ha: M ≠ M0 

2. Matched Pairs (X, Y)
H0: P(X > Y) = .5        [X equally likely to be > or < Y]
Ha: P(X > Y) > .5 or Ha: P(X > Y) < .5 or Ha: P(X > Y) ≠ 5

6

Example: No alcohol > Alcohol?

Step 1: Null and alternative hypotheses
Version 1: Is the median population difference 0, 
or is it greater than 0?

H0: M = 0
Ha: M > 0

Version 2: Is P(No alcohol > Alcohol) = .5, or is 
it greater than .5, so No alcohol values are larger?

H0: P(X > Y) = .5        
Ha: P(X > Y) > .5
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Step 2: Test statistic (no data conditions needed)

S+ = Number of observations greater than M0
or Number of observations with x > y

S− = Number of observations less than M0
or Number of observations with x < y

Ties are not used, so use n = S+ + S−.
Ex: There were 2 negative differences and 1 

zero difference, so S+ = 7, S− = 2, n = 9.
Is that convincing evidence that in population 

No alcohol values > alcohol values?

8

Step 3: Finding the p-value
Remember, p-value is:
• Probability of observing a test statistic as 

large as or larger than that observed 
• in the direction that supports Ha

• if the null hypothesis is true.
Example: For n = 9, what is the probability of 

observing 7 or more positive differences, if 
in fact probability is ½ for each pair?

Analogy: Same as probability of 7 or more 
heads in 9 flips of a fair coin!
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Properties of a Binomial Experiment
1. There are n "trials" where n is determined in advance. 

(Sign test: n pairs or single data points)
2. There are the same two possible outcomes on each trial, 

called "success" and "failure" and denoted S and F. 
(Sign test: “Success” is X > Y, “Failure” is X < Y)

3. The outcomes are independent from one trial to the 
next. Knowledge of one does not help predict the next 
one. (Sign test: Data points or pairs are independent)

4. The probability of a "success" remains the same from 
one trial to the next, and this probability is denoted by p. 
The probability of a "failure" is 1− p for every trial. 
(Sign test, under the null p = .5.)

10

P-value for the sign test, rationale

• For a binomial experiment, if S+ = number 
of successes, then for k = 0, 1, ..., n

• When p = .5, this becomes 

• But we want P(S+ or more successes)

!Pr( ) (1 )
!( )!

k n knS k p p
k n k

+ −= = −
−

!Pr( ) (.5)
!( )!

nnS k
k n k

+ = =
−
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Sign Test p-value

Let B = binomial with n trials and p = .5.
Ha: “greater than” → p-value = P(B ≥ S+)
Ha: “less than” → p-value = P(B ≤ S+)
Ha: “not equal” → p-value = 

2 × [smaller of P(B ≤ S+) and P(B ≥ S+)]
Alcohol Example: 
“Greater than” so p-value = P(B ≥ S+) 
= P(B is 7, 8 or 9) = .0195

12

Finding Sign Test p-value

R Commander:
Distributions → Discrete distributions 
→ Binomial distribution → Binomial tail probabilities
Fill in boxes:
Variable value(s): Fill in S+ (Ex: 7)
Binomial trials: Fill in n       (Ex: 9)
Probability of success: Leave default of .5
Click radio button “lower tail” or “upper tail.”
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Hands-On Activity: 
To be given in class

Sign test for atrazine concentrations.
Results shown in class.

14

Nonparametric test for independent 
samples: Two-sample Wilcoxon

• Other names are Wilcoxon rank sum test and 
Mann-Whitney test.

• Assume two populations have approximately 
the same shape, but shape is not specified.

• Null hypothesis: Centered at same value (so 
the two distributions are the same)

• Alternative hypothesis: One distribution is 
shifted to the right (or left) of the other. 
(One-sided test specifies which direction.)

15

Picture (From Statistical Ideas and 
Methods, Utts and Heckard)

16

Wilcoxon test, rationale and method
• Assign ranks to all of the observations in both 

samples, with 1 = smallest, 2 = next, ... to NT largest, 
where NT = n1 + n2

• For ties, use average rank.
• Test statistic W = Sum of ranks for Sample 1 

(sometimes subtract minimum it could be).
• The sum of all numbers from 1 to NT is 

• The smallest W could be is if Sample 1 values are all
smaller then Sample 2 values, then W = 

( 1)
2

T TN N +

1 1( 1)
2

n n +

17

Wilcoxon test rationale, continued
• Remember, test statistic W = Sum of ranks for 

sample 1, but sometimes use:
(Sum of ranks for Sample 1) –

• Suppose H0 is true. Then W should be close to the 
proportion n1/ NT  of sum of all possible ranks, or

• P-value complicated, but R commander finds it.

1 1( 1)
2

n n +

1 1( 1) ( 1)
2 2

T T T

T

n N N n N
N

+ +
× =

Example: Walker Creek Delta mercury
Step 1: 
H0: Mercury values for Walker Creek Delta and 
“other” have same distribution.
Ha: Distribution of mercury values for Walker Creek 
Delta is shifted to the right compared to “other”
Sum of all ranks (1 to 19):         If H0 true: 

Step 2: 
Compute W = ranks of values in blue 

= sum of 1 to 10 + 12.5 = 67.5.
Minimum possible is sum of 1 to 11 = 66, so 
alternative version is to use W = 67.5 – 66 = 1.5

0.056

0.069

0.072

0.087

0.095

0.13

0.15

0.16

0.21

0.22

0.38

0.62

0.62

0.67

0.68

0.78

1.4

1.4

1.6

1

2

3

4

5

6

7

8

9

10

11

12.5

12.5

14

15

16

17.5

17.5

19

11W 190 110
19

≈ × =
19(19 1) 190

2
+

=



19

R Commander
Statistics → Nonparametric tests 
→ Two-sample Wilcoxon test
Choose variables, specify alternative.
Results for the example:

data:  Mercury by WalkerOther 
W = 1.5, p-value = 0.0002592
alternative hypothesis: true location shift is 
less than 0

Since p-value is so small, reject null hypothesis. 
Conclude mercury levels are higher in Walker 
Creek delta. (Note: t-test gave p-value of .0008)

20

Hands-On Activity: 
To be given in class

Simulation comparing t-test and Wilcoxon 
test for skewed (log normal) data

21

Dealing with Non-detects

22

Left Censored Data = Non-detects

• Non-detects occur when the actual value is 
below the detection limit of the measuring 
instrument. They are recorded as < dl, where 
dl = detection limit.

• Special case of “censored data.”
• Simple methods include replacing all non-

with a fixed value. Commonly used values 
are 0, dl/2, dl.

• Simulation studies have shown that this is 
not a good idea.

23

Robust Probability Plot Method

• Construct a “probability plot” using data 
above the reporting limit.

• Use regression to extrapolate what the 
values would be below the reporting limit.

• Use those values to find summary statistics.
• See pictures on next slide, from Helsel and 

Hirsch.
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RPcalc
• Written by Steven Saiz to accompany new 

regulatory procedures in the CA Ocean Plan to 
determine if a discharge has the "reasonable 
potential" to exceed a water quality standard.

• Download it at:
http://www.waterboards.ca.gov/water_issues/program

s/ocean/docs/oplans//rpcalc.zip
• The program will estimate summary statistics and 

calculate the upper tolerance bound even if there 
are non-detects in the data.

• Uses the robust probability plot method to handle 
non-detects.

26

Demonstration and Example of 
Using RPcalc

• Lead data from San Francisco, from Steve 
Saiz

• Has non-detects with different detection 
limits
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More about Regression*

Day 3, Afternoon

*Some of these power point slides are courtesy of Brooks-
Cole, accompanying Mind On Statistics by Utts & Heckard.

2

Making Inferences
1. Does the observed relationship in a sample 

also occur in the population? 
2. For a linear relationship, what is the slope of the 

regression line in the population?
3. What is the mean value of the response

variable (y) for cases with a specific value of the 
explanatory variable (x)? 

4. What interval of values predicts an individual 
value of the response variable (y) for a case with 
a specific value of the explanatory variable (x)?

3

Sample and Population 
Regression Models
• If the sample represents a larger population, 

we need to distinguish between the 
regression line for the sample and the 
regression line for the population.

• The observed data can be used to determine 
the regression line for the sample, but the 
regression line for the population can 
only be imagined.

4

Regression Line for the Sample

is spoken as “y-hat,” and it is also referred to either 
as predicted y or estimated y.

b0 is the intercept of the straight line. The intercept is 
the value of y when x = 0.

b1 is the slope of the straight line. The slope tells us 
how much of an increase (or decrease) there is for the 
y variable when the x variable increases by one unit. 
The sign of the slope tells us whether y increases or 
decreases when x increases.

xbby 10ˆ +=

ŷ
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Deviations from the Regression 
Line in the Sample

For an observation yi in the sample, 
the residual is:

= value of response variable for ith obs.
, where xi is the value of the 

explanatory variable for the observation.

iii yye ˆ−=

xbby 10ˆ +=
iy

6

Example: Height and handspans of students
Data: Heights (in inches) and Handspans 

(in centimeters) of 167 college students. 

Regression equation: Handspan = -3 + 0.35 Height

Slope = 0.35 => 
Handspan increases 
by 0.35 cm, 
on average, 
for each increase 
of 1 inch in height.
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Example, continued
Consider a person 70 inches tall 

whose handspan is 23 centimeters. 
xy 35.03ˆ +−=The sample regression line is  

so                                         cm for this person. 

The residual =
observed y – predicted y 
= 23 – 21.5 = 1.5 cm.

5.21)70(35.03ˆ =+−=y

8

Regression Line for the Population

E(Y) represents the mean or expected value of y for cases 
in the population that all have the same x. 

β0 is the intercept of the straight line in the population.
β1 is the slope of the straight line in the population. 

Note that if the population slope were 0, there is no 
linear relationship in the population.

These population parameters are estimated using the 
corresponding statistics.

( ) xYE 10 ββ +=
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Assumptions about Deviations

1. Assume the general size of the deviations of y 
values from the line is the same for all values of 
the explanatory variable (x) – called the constant 
variance assumption.  

2.   For any x, the distribution 
of y values is normal 

=> Deviations from the     
population regression line 
have a normal distribution.
(This can be relaxed if n is 
large)

10

Simple Regression Model 
for a Population

y = Mean + Deviation

1. Mean in the population is the line 
E(Y ) = β0 + β1x  if the relationship is linear.  

2. Individual case’s deviation = y − mean, which is 
what is left unexplained after accounting for 
the mean y value at that case’s x value.

11

Estimating the Standard 
Deviation around the Line
The standard deviation for regression measures …
• roughly, the average deviation of y values from 

the mean (the regression line). 
• the general size of the residuals. 

( )
2

ˆ
2

2
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=
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Example: Height and Weight
Data: 
x = heights (in inches)
y = weight (pounds) 
of n = 43 male students. 

Standard deviation  
s = 24.00 (pounds): 
Roughly measures, for 
any given height, the 
general size of the 
deviations of individual 
weights from the mean 
weight for the height.
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Proportion of Variation Explained
Squared correlation r2 is between 0 and 1 
and indicates the proportion of variation in 
the response explained by x.
SSTO = sum of squares total = sum of squared 
differences between observed y values and    .

SSE = sum of squared errors (residuals) = sum 
of squared differences between observed y values 
and predicted values based on least squares line.

SSTO
SSESSTOr −

=2

y
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Example: Height and Weight, continued

R-Sq = 32.3% =>
The variable height 
explains 32.3% of the 
variation in the weights 
of college men.

15

Example: Driver Age and Maximum
Legibility Distance of Highway Signs
Study to examine relationship between age and maximum 
distance at which drivers can read a newly designed sign.

Average Distance = 577 – 3.01 × Age
16

Example: Age and Distance, continued
s = 49.76 and R-sq = 64.2% => Average distance from 
regression line is about 50 feet, and 64.2% of the variation 
in sign reading distances is explained by age.

642.
193667

69334193667

2

=
−

=

−
=

SSTO
SSESSTOr

SSE = 69334
SSTO = 193667

76.49
28

69334
2

==

−
=

n
SSEs
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Hands-On Activity: 
To be given in class

Applet to try to find least squares line 
(maximize R2 and minimize MSE = 

SSE/n – 2)
http://onlinestatbook.com/stat_sim/reg

_by_eye/index.html
18

Inference About Linear   
Regression Relationship

The statistical significance of a linear relationship can 
be evaluated by testing whether or not the slope is 0. 

H0: β1 = 0 (the population slope is 0, 
so y and x are not linearly related.)

Ha: β1 ≠ 0 (the population slope is not 0, 
so y and x are linearly related.)

Alternative may be one-sided or two-sided.
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Test for Zero Slope

Under the null hypothesis, this t statistic 
follows a t-distribution with df = n – 2.
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Example: Is pH in Davis rainfall 
changing over time?

21

R Commander
Statistics → Fit model → Linear regression
Specify x (explanatory) and y (response = pH)

Residuals:
Min       1Q   Median       3Q      Max 

-0.39811 -0.09337  0.00545  0.11777  0.27777 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) -25.701060   6.719198  -3.825  0.00067 ***
Year          0.015880   0.003369   4.714 6.06e-05 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1

Residual standard error: 0.1597 on 28 degrees of freedom
Multiple R-squared: 0.4424, Adjusted R-squared: 0.4225
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Example Year and pH for Davis

H0: β1 = 0 (y and x are not linearly related.)

Ha: β1 ≠ 0 (y and x are linearly related.)

Probability is close to 0 that observed slope could be as far 
from 0 or farther if there is no linear relationship in population 
(p-value shown in box) => Appears the relationship in the 
sample represents a real relationship in the population. So 
conclude that pH actually is increasing over time.

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) -25.701060   6.719198  -3.825  0.00067 ***
Year          0.015880   0.003369   4.714 6.06e-05 ***
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Confidence Interval for the Slope

A Confidence Interval for a Population Slope

where the multiplier t* is the value in a t-distribution 
with degrees of freedom = df = n - 2 such that the area 
between -t* and t* equals the desired confidence level.
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Testing Hypotheses about 
the Correlation Coefficient

The statistical significance of a linear relationship 
can be evaluated by testing whether or not the
correlation between x and y in the population is 0. 

H0: ρ = 0 (x and y are not correlated.)

Ha: ρ ≠ 0 (x and y are correlated.)

where ρ represents the population correlation

Results for this test will be the same as for the 
test of whether or not the population slope is 0.
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Effect of Sample Size on Significance

With very large sample sizes, weak relationships 
with low correlation values 

can be statistically significant.

Moral: With a large sample size, saying two 
variables are significantly related may only 
mean the correlation is not precisely 0. 

We should carefully examine the observed 
strength of the relationship, the value of r.
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Predicting for an Individual

A 95% prediction interval estimates the value of y
for an individual case with a particular value of x. 
This interval can be interpreted in two equivalent ways:

1. It estimates the central 95% of the values of y for 
cases in a population with specified value of x.

2. Probability is .95 that a randomly selected case 
from population with a specified value of x falls 
into the 95% prediction interval.
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R Commander: Storing residuals and 
predicted values

Models → Add 
observation 
statistics to data →
Check “fitted 
values” and 
“residuals” to store 
these in the data set.
Histogram of 
residuals for pH 
example:
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Prediction Interval

Note:
• t* found from t-distribution with df = n – 2. 

• Width of interval depends upon how far the specified x value 
is from      (the further, the wider).

• When n is large, s.e.(fit) will be small, and prediction interval 
will be approximately …
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Estimating the Mean at given x

A 95% confidence interval for the mean 
estimates the  mean value of the response variable y, 
E(Y), for (all) cases with a particular value of x. 
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t* found from t-distribution with df = n – 2.
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Checking Conditions 
for Regression Inference

Conditions:
1. Form of the equation that links the mean value of y to x 

must be correct.
2. No extreme outliers that influence the results unduly.
3. Standard deviation of values of y from the mean y is same

regardless of value of x.  
4. For cases in the population with same value of x, the 

distribution of y is a normal distribution. Equivalently, the 
distribution of deviations from the mean value of y is a 
normal distribution. This can be relaxed if the n is large.

5. Observations in the sample are independent of each other.
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Hands-On Activity: 
To be given in class

How outliers influence regression 
http://illuminations.nctm.org/Lesson

Detail.aspx?ID=L455
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Checking Conditions with Plots
Conditions 1, 2 and 3 checked using two plots:

Scatterplot of y versus x for the sample
Scatterplot of the residuals versus x for the sample

If Condition 1 holds for a linear relationship, then:
Plot of y versus x should show points randomly 
scattered around an imaginary straight line. 
Plot of residuals versus x should show points randomly 
scattered around a horizontal line at residual  0.

If Condition 2 holds, extreme outliers should not be 
evident in either plot.

If Condition 3 holds, neither plot should show increasing 
or decreasing spread in the points as x increases.
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Example: Residuals vs Year for pH 

Residual plot:
Is a somewhat random-
looking blob of points 
=> linear model ok.
A few possible outliers?
Spread looks somewhat 
constant across years.
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Conditions 4 and 5

Condition 4: 
examine histogram or 
normal probability plot 
of the residuals

Histogram:
Residuals are approximately 
normally distributed

Condition 5: follows from the data collection process. 
Units must be measured independently. Is pH of rainfall 
across years independent?? Perhaps consider time series 
models.
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When Conditions Are Not Met
Condition 1 not met: use a more complicated model

Based on this residual plot, a curvilinear model, 
such as the quadratic model, may be more appropriate.

36

When Conditions Are Not Met
Condition 2 not met: if outlier(s), correction depends 

on the reason for the outlier(s)

Outlier is legitimate. Relationship appears to change for 
body weights over 210 pounds. Could remove outlier 
and use the linear regression relationship only for body 
weights under about 210 pounds.
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When Conditions Are Not Met

Either Condition 1 or 3 not met:
A transformation may be required. 
(Equivalent to using a different model.)  
Often the same transformation will help 
correct more than one condition.

Common transformation is the 
natural log of y.
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Example from Jim Tischler

• Trend analysis for monitoring cleanup of TPH 
(total petroleum hydrocarbons) gasoline 

• Data (log of TPHg concentration) used to 
predict a 7.7 year time frame to achieve water 
quality objectives

• However, there is one non-detect that was 
replaced with a 0.

• See plots on next few slides.
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Attenuation Graph
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Appears to be a decreasing trend across 
time; DL = log(50) = 3.91, non-detect 
replaced with 0.

40

Plot with the non-detect removed – increasing trend!
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Regression results (not a significant 
trend in either case)

With 0 included:
Coefficients:

Estimate Std. Error t value Pr(>|t|)    
(Intercept)   5.9336117  0.7308107   8.119 7.17e-07 
Running.Time -0.0007261  0.0008939  -0.812    0.429

Without 0 included:
Estimate Std. Error t value Pr(>|t|)    
(Intercept)  5.6417630  0.1834230   30.76 2.96e-14
Running.Time 0.0001593  0.0002307    0.69    0.501
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Cautions about Regression

• Always look at plots of: 
x (horizontal axis) versus y (vertical axis)
x versus residuals
other possible explanatory variables versus 
residuals

• Methods that take dependence over time 
into account may be more appropriate when 
the explanatory variables is time.
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Debriefing: Suggestions for 
future offerings of the course
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