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Goal: We want to assess the risk that
climate change poses to our systems.

And we don’t want to miss any risks.



Given the large degree of uncertainty about
future climate,

our premise Is that it is best to identify
vulnerabilities first,

and then make judgments about whether
vulnerabilities are likely or not.



Our Concern: GCM projections are used
to sample uncertainty of future climate,

but their sampling Is computationally
expensive, inefficient and biased.

We're concerned that real vulnerabilities
will be missed.



L
Can we design a vulnerabllity analysis
that uses the strengths of available
climate information (e.g., climate
projections)

without being compromised by their
weaknesses?



Our Approach: Design a vulnerability
approach that is not dependent on or
biased by

ex ante scenarios,
a proiri probabilities,

or particular GCM projections.



Our Approach: Design the analysis to
systematically explore changes in

mean conditions and variability

(and be able to tell the difference).



Our Approach: Design the analysis to
scale to the most credible signals that can
be derived from GCM projections,

Changes in mean Precip and Temperature

Coarse spatial scales



Our Approach: Use the revealed
vulnerabilities (ex post scenarios) as
starting point for probabilistic assessment
of risk.

Analysis designed results so vulnerabillities
are defined In terms of climate changes we
can investigate.



Challenge #1: want to design a “stress
test” that varies climate in physically
plausible ways to reveal vulnerabillities.

- Maintain everything that we don’t want
varied (e.g., spatial correlation, temporal
statistics),

but allow us to vary everything we want to
(mean climate, temporal statistics, etc.) in a
controlled fashion.

10



Challenge #2: Design the stress test such
that we can make inferences about the
revealed vulnerabilities:

o At spatial and temporal scales that can be linked
to avallable information, including projections

« As function of physical mechanisms that are

credibly represented in climate model simulations
(or that can be investigated)
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Decision Frameworks for Climate Change

- How will the science improve decisions?

- Usual mode of engagement: Prediction - centric
- Science reduces the uncertainty affecting the decision

- E.g., Science: the most likely future condition is A
- Decision — under Future A, Option 1 is my best choice

- Mode of engagement under climate change

- Science characterizes uncertainty (may increase)
- E.g., Science: here is a wide range of possible futures, and we’re not
sure they delimit the true range
- Decision —um ...

UMass Hydrosystems Research Group 12



Klemes (1974): “... by assuming nonstationarity
we acknowledge nonexistence of preset limits
and directions ... unpredictability... and
subscribe to philosophical indeterminism”
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Use of Climate Information in Decisions

Precautionary Principle Predict then Act
. Uncertain but informative
oeep Well
" Characterized
Uncertainty
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ne Decision- Use

Probabilities Probabilities

Scaling
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Projection driven vs Decision Scaling

Traditional Approach Decision Scaling
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Underestimated Risk
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c -

o

O

8 ES

5 ° What we need to worry
< about

-0.

m

Estimated Variability ]

from GCM simulations Range of Historical
Variability i

g | | \ | | |
4 5 G 7 i 9 10 11

Annual Standard Deviation (103 m3) x10°

Standard Deviation

Data Source: Base climate projections downscaled by Maurer, et al. (200)
Santa Clara Universitv.



http://www.engr.scu.edu/~emaurer/index.shtml

e
Decision-Scaling

3. Evaluate climate
informed risk
scenarios

Systematic Sampling:

Changes in mean conditions
Variability

Seasonality

Other factors (water demand, etc.)

. Identify Climate

A

Hazards
“Stress Test”

|

What level of performance is needed?
What are non-climate factors that are
—=  also important?

What are current climate/weather
effects?

1. Stakeholder
defined Risks
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GCM
Projections

Decision-Scaling

, Do projections indicate these conditions
3. Evaluate climate are likely?

informed risk Are projections credible in simulating these
scenarios conditions?
How robust is the system?
| What are the relative effects of climate and
2. ldentify Climate non-climate factors?
Hazards
“Stress Test”

What level of performance is needed?
What are non-climate factors that are
—=  also important?

What are current climate/weather
effects?

1. Stakeholder

defined Risks
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e
SERDP Project Study Sites

USAF Academy

Edwards AFB

Fort Hood (South Central) — Fire management; Training; Water
Fort Benning (Southeast) — Fire management; Training; Energy
USAF Academy (Mountain West) — Water; Training; Energy
Edwards AFB (West) — Water; Energy
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COLORADO SPRINGS

Current and Build-out Conditions



Colorado Springs Utilities
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Climate Stress Test — Prescribed Climate Changes

Interannual

Daily Variability

Theoretical CDF (Ga
January Precip

— Fitted Gamma

Stoch Environ Res Risk Assess (2009) 23:879-806
DOL 10, 1007004 T7-008-0270-2

User-Defined Gamma

ORIGINAL PAPER

=
[5]
€ Unadjusted Precipit: €
E E
P = —
O o o o
= ™ _| = S
< < I
= [Te] =
N =
2 = 8 8.
- -
| &-
— _] < ]
o _| N _]
o _| o _]
I I I I
Jan 04 Jan 11 Jan 18 Jan 25
DATE
=
1.) Select a simulated non-zero E
precipitation event z
= &
.. . =
2.) Map precipitation amount to a -
guantile of fitted distribution 2
o)
. .. . =
3.) Replace with precipitation 4
amount drawn from user-defined il
o

distribution at same quantile

EXCEEDENCE PROBABIL

Adjusted Precipitatic

I

T T T T
Jan 04 Jan 11l Jan 18 Jan 25

DATE

“uu
L1

Time Series Data

Hyun-Han Kwon « Upmanu Lall - Jayantha Obeysckera

Simulation of daily rainfall scenarios with interannual
and multidecadal climate cycles for South Florida

Aggregation of Time Series

. li\
Jll H
: T I\H‘

\}‘ 1
Ak i
‘ M |\‘1M

‘Fnl

|

Jl

[ ]

J(M|

I wwl" “/L I " \ ” IW | l/ Fuf\

Wavelet anV
Time Series Decomposition

i

4—

Times Series Simulation

»_| Component 1

oA
AR ARA

f |
N

I ‘M
|

Modeling |

Cnmpaneml
TN MAARERARTN

. \'1\,|||“|'u||
Bl \N ) W \“"

i
Al I"i

w i M" .|'| qr L

Modeling -

C);
NMW%Mmmumwm

L \||\
'||\|”f| ) ll‘ll\l kL ‘1‘”M

L] H

i M{J T

v ot " |||H.r|| mlull’uwulwI! ' |u\|||“ I

I U"Mil

i
T
i

Modelihg |

\N\h

||\|r

e
wlilli‘fi‘}‘}\lrlﬂl\l‘ *J |||(TII J‘U‘: U M“\I}}\lﬂnluF dyl‘

31




Selective Variability Sampling

Average Drought Length Arkansas River Max Drought Length Arkansas River
3 State 3 State
Ark at Salida Ark at Salida
8
8 o

Drought Length (Years) &
FY
Drought Length (Years)

Average Drought Length Max Drought Length
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Colorado Springs (USAFA): CURRENT CONDITIONS

1.00
[ 096
0.92
0.88
0.84

0.80

4_

L
I

0.70

0.60

0.50

0.40

Temperature Mean (C)
W%

0.30

0.20

0.10

0.00
80 85 90 95 100

Precipitation Mean (% Change)

34



Colorado Springs (USAFA): Future Conditions
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Colorado Springs (USAFA) Water Assessment

* CMIP3 (Older GCMs)  * CMIP5 (Newest GCMSs)
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a) Control state
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“n-independent models iImplies greater riski
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Water Supply for Ft. Benning, Georgla

Major Facilities

(U.S. Army Corps of Engineers)
1. Lake Lanier

2. West Point Lake L s gk NN e
3. W.F. George Lake ST el MRS
4. Lake Seminole ) % A

Objectives: e S BRI e
1. Water Supply g |
2. Flood Risk Reduction

3. Low Flow Augmentation

Serving Utility:
Columbus Water Works
(Lake Oliver)
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OBJECTIVES

Apalachicola-Chattahoochee-
Flint River Basin




ACF Climate Risk Assessment
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L
Attribution of Risk/Uncertainty

Upper Basin Minimum Storage Variability
Explained by Independent Variables (Projections Space)

Fraction of
Sum(Squared Deviations from Mean)
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EVALUATING ADAPTATION
ALTERNATIVES




L
Fort Hood: Water Supply and Flood Risk

Lake Belton Facts
Capacity: 1,357 MCM
~60% Flood Storage
~40% Water Supply
Drainage: 9,220 km?
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Performance Metrics

Objective

Flood Risk
Reduction

Water Supply
Security

Metric

Frequency of
Reservoir
Spills

Frequency of
Drought
Warning

Minimum
Storage

Threshold of

Acceptable

Performance

1in every 50
years

1in every 10
years

Drought
Emergency
Storage
(~175,000 af)

Threshold of
Robustness
AcCross
Hydrologic
Uncertainty
and Internal
Climate
Variability

90%

90%

90%
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Low Regrets Adaptation: Storage Reallocation

- Can climate change impacts be mitigated by increasing
the conservation pool?

Conservation Pool
Alternative Elevation (meters
above mean sea level)

Water Supply Storage Percent of Total
(MCM) Capacity (%)

Current

Alternative 1

Alternative 2

Alternative 3

Alternative 4
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Long Term
Change

Stress Test
Scenarios

T

rojections

Future Variability
(Internal Climate Variability)

Transfer Function Uncertainty
(Hydrologic Model Uncertainty)

Systems Response
Under Alternatives

Planning
Alternatives

Planning
Alternatives

Robustness

O % Adequate
B % hadequate
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e
Existing Conservation Pool — Robust Performance

Temperature Change (C)
2
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Alternative 1

Temperature Change (C)
2

70 85 100 115 130
Precipitation Change (% of Historic Avqg.)

52



Alternative 4

Temperature Change (C)
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Best Performing Alternatives for given climate change

Temperature Change (C)

B BN .
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Best Performing Alternatives for given climate change

Temperature Change (C)

Model Generation Emission Scenario
& CMIP3 = CMIP5 M ow E Medium M High

B BN .

No Plan Current  Alt. 1 Alt. 2 Alt. 3 Alt. 4

|
70 85 100 115 130

Precipitation Change (% of Historic Avg.)
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.- 1 1LI-aE
Summary

- Inherent, irreducible uncertainties of climate system

- Requires a shift of emphasis from “reduce uncertainty” to manage
uncertainty

- GCM projections are an inefficient tool for exploring vulnerability

- Decision-Scaling links bottom-up and top-down

approaches

- First, detects the climate vulnerabilities of the system through systematic
sampling of plausible climate change space (projections not needed)

 Incorporates stakeholder input and vulnerability thresholds

- Reveals the key climate variables that the system is sensitive to, and the
magnitude of climate changes that cause unacceptable outcomes

- Allows the climate science investigation to focus on priorities revealed
through the analysis
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